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We analyse the stability of plane Poiseuille flow with a streamwise system rotation.
It is found that the instability due to two-dimensional perturbations, which sets
in at the well-known critical Reynolds number, Rc = 5772.2, for the non-rotating
case, is delayed as the rotation is increased from zero, showing a stabilizing effect of
rotation. As the rotation is increased further, however, the laminar flow becomes most
unstable to perturbations which are three-dimensional. The critical Reynolds number
due to three-dimensional perturbations at this higher rotation case is many orders of
magnitude less than the corresponding value due to two-dimensional perturbations.
We also perform a nonlinear analysis on a bifurcating three-dimensional secondary
flow. The secondary flow exhibits a spiral vortex structure propagating in the
streamwise direction. It is confirmed that an antisymmetric mean flow in the spanwise
direction is generated in the secondary flow.

1. Introduction
It is important to understand the stability of flows under a system rotation for

both engineering and geophysical applications. Compared with a large number of
investigations on plane Poiseuille flow with a spanwise system rotation (see Wall &
Nagata 2006 and the references therein), the same flow with a streamwise system
rotation has attracted less attention despite its importance in the geophysical context,
such as instabilities of meridional flows across the equator. As far as we know
even the linear stability of the laminar flow has not yet been analysed properly.
It is only recently that experimental (Recktenwald, Brücker & Schröder 2004) and
numerical (Oberlack et al. 2006) investigations of turbulent plane Poiseuille flow
with a streamwise rotation have been reported. The most striking feature among
other turbulent properties reported is the generation of a mean flow in the spanwise
direction.

Plane Poiseuille flow with a streamwise system rotation can be regarded as the
narrow-gap limit of an annular Poiseuille flow between concentric rotating cylinders.
As a special example of so-called spiral Poiseuille flow (Joseph 1976), where the
two concentric cylinders rotate independently (Chung & Astill 1977; Hasoon &
Martin 1977; Takeuchi & Jankowski 1981; Cotrell & Pearltein 2004, 2006), the linear
stability of the rigid-body rotation case with the radius ratio of 0.5 has been studied
by Meseguer & Marques (2002) with the result that the critical state is determined
by the non-axisymmetric modes. Non-axisymmetric modes in annular Poiseuille flow
correspond to three-dimensional modes in our plane geometry.
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Figure 1. The configuration of the model.

We note that the appearance of non-axisymmetric instabilities before the
axisymmetric instabilities has also been reported in Hagen–Poiseuille flow with an
axial rotation (Pedley 1968, 1969; Cotton & Salwen 1981; Fernandez-Feria & del
Pino 2002), although it is difficult to make a direct comparison with the current
investigation, because of the differences not only in geometries, but also in the critical
states in non-rotational cases (plane and annular Poiseuille flows become unstable at
a finite Reynolds number, whereas pipe Poiseuille flow is linearly stable for any finite
Reynolds numbers).

The purposes of the current paper are to identify the critical mode for the stability
of plane Poiseuille flow with a streamwise rotation and to seek the origin of the
spanwise mean flow.

We first describe the results of our linear analysis and then proceed to a nonlinear
investigation for the secondary flow which bifurcates as the basic state loses its
stability. (We are interested only in the absolute instability, although the appearance
of convective instability before absolute instability is a possibility.) We do find a
spanwise mean flow in the three-dimensional secondary flow. Results are compared
with the direct numerical simulation by Oberlack et al. (2006).

2. Formulation
2.1. Configuration

We consider a viscous incompressible fluid motion of a fluid with density ρ∗ between
two parallel plates with a gap width, 2d∗, induced by a constant pressure gradient
under the system rotation Ω∗. The orientation of the system rotation is parallel to
the pressure gradient (figure 1). We take the origin of the coordinate system on the
midplane between the plates, with the x∗- and y∗-coordinates being in the streamwise
and spanwise directions, respectively, and the z∗-coordinate being normal to the
plates. Corresponding to the x∗-, y∗- and z∗-coordinates, we define the unit vectors i ,
j and k. The basic flow with a quadratic velocity profile, i.e. the plane Poiseuille flow,
UB∗(z∗), is not affected by the rotation. We are interested in investigating the stability
of the basic flow and analysing the nature of a secondary flow which may bifurcate
when the basic flow loses its stability.

2.2. The governing equations and the basic state

In order to non-dimensionalize the system, we take d∗ as the length scale, d2
∗/ν as

the time scale, ν/d∗ as the velocity scale and ρ∗ν
2/d2

∗ as the pressure scale, where ν

is the kinematic viscosity. Then, the equations of continuity and the conservation of
momentum are written as

∇ · u = 0 (2.1)
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and
∂u
∂t

+ (u · ∇)u = −∇Π + ∇2u − Ω i × u, (2.2)

where u is the velocity, Π is the pressure and Ω is the rotation number defined by

Ω =
2Ω∗d

2
∗

ν
. (2.3)

The governing equations are to be solved subject to the no-slip boundary condition
on the plates:

u = 0 at z = ±1. (2.4)

Assuming that the basic flow UB is unidirectional in the x-direction depending
only on the z-coordinate when the imposed pressure gradient ∂Π/∂x is constant, we
obtain

UB(z) = UB · i = R(1 − z2), (2.5)

where we have used the value, U0∗ = UB∗(0), of the basic flow on the midplane z = 0
to define the Reynolds number

R =
U0∗d∗

ν
. (2.6)

The stability of the basic state as well as the development of a new flow field due to
the loss of stability is governed by two non-dimensional parameters, R and Ω .

2.3. The disturbance equations

In order to analyse the stability of the basic state and to seek solutions other than
the basic state we superimpose disturbances, û and Π̂ , on the basic state.

u = UB + û, Π = ΠB + Π̂. (2.7)

Substituting (2.7) into (2.1) and (2.2) we find that the disturbances satisfy the
following equations.

∇ · û = 0, (2.8)

∂ û
∂t

+ (û · ∇)(UB i + û) + (UB i · ∇)û = −∇Π̂ + ∇2û − Ω i × û. (2.9)

The no-slip boundary condition for û is given by

û = 0 at z = ±1. (2.10)

For convenience, the velocity disturbance û is separated into the mean parts, Ǔ (t, z)
in the streamwise direction and V̌ (t, z) in the spanwise direction, and the residual
ǔ = (ǔ, v̌, w̌)T ,

û = Ǔ (t, z)i + V̌ (t, z) j + ǔ, (2.11)

so that

Ǔ (t, z) = û · i, V̌ (t, z) = û · j , (2.12)

where the x, y-average is indicated by an overbar. By definition the x, y-average of
the residual vanishes:

ǔ = 0. (2.13)

We anticipate that the mean parts, Ǔ (t, z) and V̌ (t, z), are created by the Reynolds
stress (see (2.21) and (2.22)). It is worthing mentioning that in contrast to Wall &
Nagata (2006), where only the mean flow modification in the streamwise direction
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Ǔ (t, z) was considered, we incorporate the generation of the mean flow in the spanwise
direction V̌ (t, z) as well. The symmetry pertinent to the current problem is represented
by

(ǔ, v̌, w̌)(x, y, z) = (ǔ, v̌, w̌)

(
x +

π

α
, y +

π

β
, z

)
, (2.14)

(ǔ, v̌, w̌)(x, y, z) = (ǔ, −v̌, −w̌)

(
x, −y +

π

β
, −z

)
. (2.15)

It can be shown from the spatial symmetry described above (the Reynolds stress
terms can be proved to be ǔw̌(−z) = −ǔw̌(z), and v̌w̌(−z) = ǔv̌(z) by (2.15).) that
the mean flow in the streamwise direction Ǔ is symmetric in z and the mean flow in
the spanwise direction V̌ is antisymmetric in z.

The residual ǔ, which is solenoidal, is further separated into the poloidal and the
toroidal parts as

ǔ = ∇ × ∇ × (φk) + ∇ × (ψk)= (∂2
xzφ + ∂yψ, ∂2

yzφ − ∂xψ, −
2φ)T , (2.16)

where 
2 = ∂2
xx + ∂2

yy , so that the total velocity field is now given by

u = UB(z) + Ǔ (t, z)i + V̌ (t, z) j + ∇ × ∇ × (φk) + ∇ × (ψk). (2.17)

Note that (2.13) requires φ = ψ ≡ 0. The horizontal symmetry (2.14) and the reflection
symmetry (2.15) are imposed on φ and ψ later (see (4.10)).

The no-slip boundary condition (2.10) leads to

Ǔ = V̌ = φ =
∂φ

∂z
= ψ = 0 at z = ±1. (2.18)

After substituting (2.17) into (2.9) we operate k · (∇ × ∇ × and k · (∇× on (2.9) to
obtain

∂t∇2
2φ + ((UB + Ǔ )∂x∇2 + V̌ ∂y∇2 − ∇4 − (UB + Ǔ )′′∂x − V̌ ′′∂y)
2φ

+ Ω∂x
2ψ + δ((ǔ · ∇)ǔ) = 0, (2.19)

∂t
2ψ + ((UB + Ǔ )∂x + V̌ ∂y − ∇2)
2ψ

− ((UB + Ǔ )′∂y + Ω∂x − V̌ ′∂x)
2φ − ε((ǔ · ∇)ǔ) = 0, (2.20)

where the prime, denotes differentiation with respect to z (there should be no confusion
in adopting a different usage of primes in § 4.2, where primes are operated on integers
to distinguish between odd and even integers). The nonlinear terms, δ((ǔ · ∇)ǔ) ≡
k · (∇ × ∇ × ((ǔ · ∇)ǔ)) and ε((ǔ · ∇)ǔ) ≡ k · (∇ × ((ǔ · ∇)ǔ)), which appear in (2.19) and
(2.20), respectively, are expressed explicitly in the Appendix.

The equations for the mean parts Ǔ (t, z) and V̌ (t, z) can be obtained by taking the
x, y-averages of the x- and y-components, respectively, of (2.9):

Ǔ ′′ − ∂zǔw̌ ≡ Ǔ ′′ + ∂z
2φ
(
∂2

zxφ + ∂yψ
)

=
∂Ǔ

∂t
, (2.21)

V̌ ′′ − ∂zv̌w̌ ≡ V̌ ′′ + ∂z
2φ
(
∂2

zyφ − ∂xψ
)

=
∂V̌

∂t
. (2.22)
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3. The linear analysis
3.1. The numerical method

Since the mean parts, Ǔ (t, z) and V̌ (t, z), are created by the Reynolds stresses, where
disturbances interact quadratically (see (2.21) and (2.22)), they do not participate
in the linear analysis. Omitting Ǔ (t, z), V̌ (t, z) and nonlinear terms δ((ǔ · ∇)ǔ) and
ε((ǔ · ∇)ǔ) in (2.19) and (2.20), we obtain

∂

∂t
∇2
2φ =

(
∇4 + U ′′

B∂x − UB∂x∇2
)

2φ − Ω∂x
2ψ, (3.1)

∂

∂t

2ψ =

(
U ′

B∂y + Ω∂x

)

2φ + (∇2 − UB∂x)
2ψ. (3.2)

We note that when Ω = 0, i.e. in the case of non-rotating plane Poiseuille flow,
(3.1) is independent of the toroidal component ψ , and the solutions to (3.1) and
(3.2) are classified into two classes of eigenmodes. Members of the first class of
eigenmodes, where φ is determined by (3.1) and ψ is found by solving (3.2) which is
inhomogeneous with non-vanishing U ′

B∂y
2φ, are called the Orr–Sommerfeld mode
(O-S mode). Members of the second class of eigenmodes, where φ ≡ 0 and ψ

satisfies homogeneous (3.2), are called the Squire mode (see, for example, Schmid &
Henningson 2001). The toroidal component ψ of the O-S mode is absent when
Squire’s theorem is applied, i.e. ∂y ≡ 0, with the stability being determined solely
by the poloidal component φ. We extend this classification to the rotational case.
When Ω �= 0, Squire’s theorem does not hold, so that the three-dimensional form of
perturbations with the streamwise and spanwise wavenumbers, α and β , must be
taken into consideration in general.

In order to solve the equations above by the normal mode ansatz we expand φ and
ψ using the Chebyshev polynomials T(z) as follows:

φ =

∞∑
l=0

al(1 − z2)2T(z) exp(iαx + iβy + σ t), (3.3)

ψ =

∞∑
l=0

bl(1 − z2)T(z) exp(iαx + iβy + σ t), (3.4)

where σ is the growth rate and the factors, (1 − z2)2 for φ and (1 − z2) for ψ , are
incorporated so that the boundary conditions

φ =
∂φ

∂z
= ψ = 0 at z = ±1 (3.5)

are satisfied automatically. For numerical purposes, the infinite series in (3.3) and
(3.4) must be truncated by using only the first (L + 1) terms.

The evaluation of (3.1) and (3.2) at the collocation points

zi = cos

(
iπ

L + 2

)
(i = 1, . . . , L + 1), (3.6)

after (3.3) and (3.4) are substituted, leads us to the eigenvalue problem

Aijxj = σBijxj , xj ∈ (al, bl) (l = 0, 1, . . . , L), (3.7)
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Ω R L=10 L =20 L =30

140 0 (−10.703905, −22.644485) (−10.703907, −22.644491) (−10.703907, −22.644491)
140 100 (6.100084, −34.495072) (6.098971, −34.492437) (6.098971, −34.492437)
140 200 (17.869938, −68.809149) (17.869569, −68.779014) (17.869569, −68.779014)
1000 0 (−24.300618, 420.425818) (−24.300621, −420.425816)
1000 100 (−24.492633, −597.832466) (−24.492639, −597.832471)
1000 200 (−25.343430, −783.227939) (−25.343436, −783.227962)

Table 1. The eigenvalue σ with α = 0.5, β = 2.5 for Ω =140 and α = 2.0, β = 4.0 for Ω = 1000
at the truncation level L. The first number in the parentheses is the real part of σ and the
second is the imaginary part.

with σ as the eigenvalue. We solve (3.7) numerically by using the package DGVCCG
of IMSL software library (Visual Numerics Inc. 1990) which uses the QZ algorithm.
Once the eigenvalue σ is determined, the associated eigenfunctions,

Φ(z) =

L∑
l=0

al(1 − z2)2T(z), (3.8)

Ψ (z) =

L∑
l=0

bl(1 − z2)T(z), (3.9)

are calculated.
The eigenvalues σ are compared with regard to the truncation level L for typical

cases in table 1. We see that L = 20 gives an accuracy which is more than sufficient for
our purpose. Therefore, we choose L =20 in the following calculations unless stated
otherwise.

3.2. Results

Figure 2 shows the curves of Re[σ ] = 0 in the (Ω, R)-plane for various wavenumber
pairs (α, β). We can see from figure 2 that the flow is unstable at a large Reynolds
number against two-dimensional perturbations (β = 0) for Ω 	 0. We find that
two-dimensional perturbations dominate for Ω � 33.923 and that three-dimensional
perturbations become responsible for instability for Ω� 33.923. Figure 2 indicates
that the critical Reynolds number, Rc, decreases rapidly as Ω increases slightly over
33.923 and that it takes an almost constant value for large Ω . (In fact, Rc =66.50 at
Ω = 1000, 66.46 at Ω =2000 and 66.45 at Ω = 3000). When Ω > 500, the streamwise
wavenumber α of the three-dimensional perturbations corresponding to the critical
Reynolds number decreases as Ω increases, while the spanwise wavenumber β remains
at an almost constant value, β ≈ 2.5. The existence of two asymptotic regimes for
the three-dimensional perturbations, namely, Ω 	 33.923 at large R and Rc 	 66.45
at large Ω , can be compared with those in the rigid-body rotation case of the spiral
Poiseuille flow with the radius ratio 0.5 of the two cylinders (Meseguer & Marques
2002) where the two regimes are determined by the non-axisymmetric modes with the
azimuthal wavenumber n= 5 and n= 6.

3.2.1. Two-dimensional perturbations

We choose L =50 to calculate the critical Reynolds number for two-dimensional
perturbations which take place at a larger R region. The envelope curve which
originates on the R-axis in figure 2 corresponds to the neutral curve due to the
O-S mode with α = 1.02 and β =0 at Ω = 0. As Ω departs from zero, the critical
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Figure 2. The neutral curves in the (Ω,R)-plane for various wavenumber pairs. α varies
along the two-dimensional envelope curve with β = 0, while both α and β vary along the
three-dimensional envelope curve. The two-dimensional envelope curve intersects the R-axis
at R = 5772.2 with α =1.02. The three-dimensional envelope curve seems to have asymptotes
at large R and at large Ω .

Reynolds number increases gradually from the well-known value, 5772.2, for the non-
rotational case, showing the stabilizing effect of rotation. The corresponding critical
wavenumber αc decreases only slightly with increasing Ω along this envelope (for
example αc = 1.014 at Ω = 500).

The eigenvalues,

σ = −iαc, (3.10)

where c is the phase speed, at R =10 000 and Ω =140 with α = 1.0 and β =0
are plotted in the complex plane (cr, ci) ≡ (Re[c], Im[c]) in figure 3. Eigenvalues
corresponding to both O-S modes and Squire modes are shown. To avoid confusion,
only eigenvalues corresponding to antisymmetric (even streamfunction) O-S modes
are shown; those corresponding to the symmetric (odd streamfunction) perturbations
calculated first by Orszag (1971) are not included. (The black square at the top right-
hand corner in figure 3 will be explained later.) It is confirmed that the distribution
of the eigenvalues of the O-S modes at Ω = 140 in the figure hardly change from
that with Ω = 0: there are three distinct families, A-family, S-family and P-family
(Mack 1976). As we can see, the distribution of the eigenvalues of the Squire modes
in the complex plane follows the same pattern as the O-S modes. We can also see
in figure 3 that there is only one eigenvalue with Re[σ ] ≡ αIm[c] > 0 and it belongs
to the A-family of the O-S modes. The eigenfunctions, Φ(z) and Ψ (z), corresponding
to this eigenvalue, but at R =5772.3 and (α, β) = (1.02, 0), are depicted in figure 4.
The eigenfunction Φ(z), with suitable multiplication by a constant, could be regarded
as the streamfunction which is often adopted in the conventional two-dimensional
analysis because the perturbation velocity due to the poloidal component φ in the
two-dimensional case is given by (iαΦz, 0, −α2Φ)T and, therefore, iαΦ represents the
streamfunction in the (x, z) plane. It can be seen that there are hardly any effects
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Figure 3. The distribution of the eigenvalues in the complex plane at R = 10 000, Ω = 140,
with (α, β) = (1.0, 0). Circles, the O-S modes; triangles, the Squire modes. The eigenvalue with
the largest real part on the α-axis in Figure 5 is traced back to the eigenvalue at the top
right-hand corner in this figure indicated by the black square.
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Figure 4. The eigenfunctions of the largest Re[σ ] for (α, β) = (1.02, 0) at
Ω = 140, R = 5772.3.

of rotation on the eigenfunction Φ(z) when our figures 4(a) and 4(b) at Ω =140
are compared with those in the two-dimensional analysis for Ω = 0 described in,
for instance, Drazin & Reid (1978): the eigenfunction Φ(z) is characterized typically
by a Gaussian-like distribution for its real part (figure 4(a)) and a small but sharp
concentrated distribution near both walls for its imaginary part (figure 4b). The
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Figure 5. The unstable region indicated by a dark area in the (α, β) plane for Ω = 140.
(a) R = 60, (b) R = 70, (c) R = 80, (d) R = 90, (e) R = 100 and (f) R = 200.

rotational effect is observed as the generation of the eigenfunction Ψ (z) owing to
non-vanishing Ω∂x
2φ in (3.2) which reveals a strong concentration of the spanwise
component of the perturbation velocity, (0, −iαΨ, 0)T , near the walls as indicated in
figures 4(c) and (d).

3.2.2. Three-dimensional perturbations

In order to present an example of the instability due to three-dimensional
perturbations that occurs for Ω � 33.923, we plot the contours of Re[σ ] on the
(α, β)-plane for various values of R in figure 5 when Ω = 140. The plane is divided
into two regions depending on the dominant eigenvalue: one attached to the α-axis
and the other to the β-axis (figure 5a). As R is increased, instability emerges in the
region attached to the β-axis at around β = 2.3 with small α (figure 5b). As R is
further increased, the instability region expands in size but never touches the β-axis
(figures 5c–f)). On the other hand, instabilities never appear in the region attached to
the α-axis.

The dominant eigenvalue in each region in the (α, β)-plane is easily identified
when the eigenvalues with the first two largest real parts are plotted against α for
a fixed β (figure 6). Figure 6(a) shows that the real part of the eigenvalue which
is the largest at α = 0 increases at first and decreases after it reaches its peak at
α ≈ 0.3 ∼ 0.5 depending on R, as α is increased. It is found that the peak first reaches
Re[σ ] = 0 when R = 69.39 at (α, β) = (0.35, 2.36) for Ω = 140. The eigenmode with
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Figure 6. The eigenvalues σ corresponding to the two largest real parts for R = 60, 80 and
100 with β = 2.3, Ω =140. (a) the real part, (b) the imaginary part. The real parts of the three
curves in the upper group in (b) correspond to those which are dominant for smaller α in (a).

this eigenvalue is the one that is dominant in the region attached to the β-axis. Fig-
ure 6 also shows that the eigenvalue which has the second largest real part at α = 0
keeps an almost constant negative value for its real part and becomes dominant for
larger α. The eigenmode with this eigenvalue is the one that is dominant in the region
attached to the α-axis in figure 5. The imaginary parts of both the first and the second
eigenvalues decrease monotonically as α is increased.

Now, we analyse the eigenmode which dominates in the region attached to either the
α-axis or the β-axis in more detail. As for the eigenmode which dominates in the region
attached to the β-axis, the symmetries of φ and ψ in z are broken because β �= 0 and
U ′

B in (3.2) is antisymmetric in z. As a result the eigenfunctions, Φ(z) and Ψ (z), become
asymmetric as shown in figure 7 for R = 69.4 and Ω =140 at (α, β) = (0.35, ± 2.36).
All the peaks in the figures are seen to be biased towards the wall either at z = 1 or
z = −1 depending on the sign of β . We have traced this eigenvalue carefully back to
the parameter values, R = 10 000, Ω = 0 and (α, β) = (1.0, 0) and found it originates
from the same O-S mode that has caused the two-dimensional instability.

Since the eigenmode which dominates in the region attached to the α-axis in figure 5
is never involved in instabilities, we describe the associated eigefunctions only briefly.
The eigenfunctions, Φ(z) and Ψ (z) for R = 69.4 and Ω = 140 at (α, β) = (0.35, 0) are
shown in figure 8. We see that the peaks of Re[Φ(z)] and Re[Ψ (z)] are centred
in the middle. The distributions of Im[Φ(z)] and Im[Ψ (z)] are smoother and their
peaks are situated more towards the centre than their counterparts in figure 4. Again,
we have traced this eigenvalue back to the parameter values, R = 10 000, Ω = 0 and
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Figure 7. The eigenfunctions of the largest Re[σ ] at (α, β) = (0.35, 2.36): solid curve and at
(α, β) = (0.35, −2.36): dotted curve. Ω = 140, R = 69.4.
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(α, β) = (1.0, 0) and identified its origin as one of the Squire mode indicated by the
black square at the top-right corner of figure 3.

Going back to figure 6, we notice that the numerical values of the two eigenvalues
at α = 0 are the same for all R. Actually, they are (−7.7540, 0.0) and (−10.9745, 0.0).
We obtain these values analytically, below. When α = 0, (3.1) and (3.2) are simplified
as

σ (φ′′ − β2φ) = φ′′′′ − 2β2φ′′ + β4φ, (3.11)

σψ = −2βiRzφ + ψ ′′ − β2ψ. (3.12)

Note that (3.11) decouples from (3.12) and that the stability can be determined
by solving only (3.11). Since (3.11) does not involve parameters other than β , the
eigenvalues at α = 0 do not depend on R or Ω . (In fact, the eigenvalues at α = 0 are
the same for any form of unidirectional flow, irrespective of whether it is subject to
streamwise rotation or not.) Together with the boundary condition φ(±1) = φ′(±1) = 0,
(3.11) leads to the solvability condition (the existence of non-trivial φ)

4(β2 − γ 2)2 cosh γ sinh γ

(
tanh β

tanh γ
+

tanh γ

tanh β
− β

γ
− γ

β

)
= 0, (3.13)

where γ 2 = σ + β2. The condition cosh γ =0 gives γ = i(1/2 + kπ), k = 0, 1, 2, 3 and
the condition sinh γ = 0 gives γ = i(kπ), k = 1, 2, . . .. The value, −7.75740 at α = 0
with β = 2.3 in figure 6 corresponds to σ = −β2 − (π/2)2, while the other value,
σ = − 10.9745 satisfies tanh β/tanh γ + tanh γ /tanh β =β/γ + γ /β .

4. The nonlinear analysis
It is of interest to find a three-dimensional finite-amplitude solution which is

expected to bifurcate first as R is increased for Ω � 33.923. Finite-amplitude solutions
are governed by (2.19), (2.20), (2.21) and (2.22) subject to the boundary conditions
(2.18). Since the eigenvalue is a single complex number, i.e. not a complex conjugate,
we anticipate that the solution bifurcating from the linear critical state is of travelling-
wave type. Therefore, we expand φ, ψ , Ǔ and V̌ as

φ =

L∑
l=0

M∑
m= −M

(m,n)�=(0,0)

N∑
n=−N

almn fl(z) exp(imα(x − ct) + inβy), (4.1)

ψ =

L∑
l=0

M∑
m= −M

(m,n)�=(0,0)

N∑
n=−N

blmn gl(z) exp(imα(x − ct) + inβy), (4.2)

Ǔ (z) =

L∑
l=0

cl gl(z), (4.3)

V̌ (z) =

L∑
l=0

dl gl(z), (4.4)

at the truncation level (L, M, N). The boundary conditions (2.18) are satisfied by
taking

fl(z) = (1 − z2)2 Tl(z), (4.5)

gl(z) = (1 − z2) Tl(z). (4.6)
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(L, M,N ) c V̌τ

(19,7,7) 61.74984 2.91666
(17,6,6) 61.74987 2.91698
(15,5,5) 61.75040 2.91606
(13,4,4) 61.74868 2.91913

Table 2. The phase speed c and the momentum transport in spanwise direction V̌τ of the
secondary flow at the truncation level (L,M,N ). α = 0.35, β = 2.36, Ω = 140, R = 100.

We have set (4.3) and (4.4) in such a way that the mean parts, Ǔ and V̌ , do not depend
on time for a travelling-wave solution. To justify this, suppose that w̌( = −
2φ)
in (2.21) and (2.22) has a factor exp(imα(x − ct) + inβy). Then, it interacts with
ǔ( = ∂2

xz + ∂yψ) and v̌( = ∂2
yz − ∂xψ) with a factor exp(iµα(x − ct) + iνβy), only when

m + µ = 0 and n + ν = 0, in order for w̌ǔ and w̌v̌ to have non-zero values. Therefore,
the dependence of the Reynolds stress terms, w̌ǔ and w̌v̌, on time vanishes when they
are averaged.

4.1. Numerical method

Evaluation of (2.19)–(2.22) at the same collocation points (3.6) that are used in the
linear analysis after (4.1)–(4.4) are substituted into them leads us to the algebraic
equation

Aijxj + Bijkxjxk = 0, xj ∈ (almn, blmn, cl, dl, c). (4.7)

The unknown vector components almn, blmn, cl, dl, c are determined by a Newton–
Raphson iterative scheme. Although the number of unknowns is increased by one
owing to the inclusion of the unknown phase speed c, the number of unknowns and
equations can be matched by fixing, for example, the imaginary part of one of the
amplitude coefficients almn at zero. This means physically that the flow is frozen at
some instance (see Wall & Nagata 2006). The deviation of the phase speed from the
linear solution can be used as a nonlinear measure of the secondary flow.

The momentum transports in the streamwise and the spanwise directions,

Ǔτ =
∂Ǔ

∂z

∣∣∣∣∣
z=1

(4.8)

and

V̌τ =
∂V̌

∂z

∣∣∣∣∣
z=1

, (4.9)

can also be used as nonlinear measures of the secondary flow.
Numerical convergence with respect to truncation level is tabulated for a typical

combination of parameters in table 2. We select (L, M, N) = (15, 5, 5) as a sufficiently
accurate truncation level in the following calculations.

4.2. The symmetry

It can be easily verified that the spatial symmetry (2.14) and (2.15) of the three-
dimensional travelling-wave solutions is equivalent to the following symmetry, which
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Figure 9. The phase speed with α = 0.35, β = 2.36, Ω = 140. The solid curve indicates the
nonlinear state whereas the dashed curve corresponds to the linear eigenvalue.

is closed under the nonlinear interactions.

φ, ψ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
cosm

′
α(x − ct)

sinm
′
α(x − ct)

}
sin n

′
βy F

′ (z)

{
cosm

′
α(x − ct)

sinm
′
α(x − ct)

}
cos n

′
βy F′′(z)

{
cosm

′′
α(x − ct)

sinm
′′
α(x − ct)

}
sin n

′′
βy F

′′ (z)

{
cosm

′′
α(x − ct)

sinm
′′
α(x − ct)

}
cos n

′′
βy F

′ (z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.10)

The integers m, n and  with a single prime indicate odd integers whereas m, n

and  with double primes indicate even integers. The function F
′ (z) represents the

odd function f
′ (z) or g

′ (z), whereas F
′′ (z) represents the even function f

′′ (z) or
g

′′ (z) (see (4.5) and (4.6)). The above symmetries are imposed in such a way that the
amplitude coefficients amn and bmn for φ and ψ which do not belong to the set (4.10)
are set to zero initially in the Newton–Raphson iterative scheme. They remain zero
throughout successive iterations.

The symmetry described above reveals that the mean flow in the streamwise
direction Ǔ is symmetric in z and the mean flow in the spanwise direction V̌ is
antisymmetric in z:

Ǔ (−z) = Ǔ (z), (4.11)

V̌ (−z) = −V̌ (z). (4.12)

4.3. Results

The bifurcation diagram for this system is depicted in figure 9, where the phase speed
c of the nonlinear solution is shown to bifurcate at R = 69.39 from the curve of
−Re[σ ]/α for the linear disturbance.

Figure 10 represents the bifurcation nature of the nonlinear solution in terms of the
momentum transports Ǔτ and V̌τ . It should be stressed that the momentum transport
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Figure 10. The momentum transports. (a) Ǔτ in the streamwise direction, (b) V̌τ in the
spanwise direction. α = 0.35, β = 2.36, Ω = 140.
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Figure 11. (a) The total mean flow UB+Ǔ in the streamwise direction. −1 � z � 0, undisturbed

0 � z � 1; disturbed. (b) The mean flow V̌ in the spanwise direction. R = 70, 80, 100 with
α = 0.35, β = 2.36, Ω = 140.

in the spanwise direction, which is absent in the basic laminar state, is generated in
the three-dimensional wave travelling in the streamwise direction.

Although the mean flow modification Ǔ (z) itself causes scarcely any changes in the
total momentum transport dUB/dz|z = ±1+Ǔτ in the streamwise direction, the profile of

the total mean flow UB+Ǔ is changed substantially as is shown in figure 11(a) although
the modification Ǔ is still not sufficient to produce a inflection point. A part of the
energy of the basic flow is transferred to three-dimensional disturbances and is spent
partially to generate the mean flow V̌ in the spanwise direction. The generated mean
flow V̌ in the spanwise direction, the profile of which is antisymmetric in z, amounts
to a few per cent of UB + Ǔ when their peak values are compared even at a Reynolds
number about 50 % above its critical value. The vorticity due to V̌ has the same sign as
the background rotation Ω . The peaks of the spanwise mean flow profile in the direct
numerical simulation by Oberlack et al. (2006) are situated closer to the boundaries
z = ±1 than our V̌ (see their figure 5). These differences probably occur because
their Reynolds number Reτ

= 180 and the Coriolis parameter Ro =2.5, 6.0, 10.0 are
extremely large by our corresponding definitions: R = 1

2
R2

eτ
= 16 200, Ω =Reτ

Ro = 450,
1 080, 1 800. (We abandoned our attempt to continue our solution gradually to their
parameter values after we encountered the first turning point of the solution branch
at R = 986.2 for Ω = 140. However, this does not exclude the existence of the solution
branch at larger parameter values.) Nonetheless, it should be noted that the reverse
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Figure 12. The equisurface ω = ω0 of the streamwise component of the vorticity of the
secondary flow with α = 0.35, β = 2.36, Ω = 140. On the black surfaces ω = ω0 and on the grey
surfaces ω = −ωo. (a) R = 70, ω0 = 1.70 (ωmax = 6.81182, ωmin = −6.81277), (b) R = 80, ω0 = 8.05
(ωmax = 28.6589, ωmin = −27.6400), (c) R =100, ω0 = 16.05 (ωmax = 49.6988, ωmin = −45.9090).

flow nature of V̌ adjacent to the midplane z = 0 with three inflection points across
the channel can also been seen in their direct numerical simulation results. The
inflectional flow in the spanwise direction may lead to instabilities of the secondary
flow and further bifurcations may ensue.

The flow field of the nonlinear travelling-wave solution throughout the channel
is depicted in terms of the streamwise component of the vorticity, ω = i · ∇ × u, in
figure 12. It can be seen that the vortex tubes are twisted more strongly as R is
increased.

The twisted nature of the streamwise vorticity is also observed in figure 13, where the
cross-sectional disturbed flow components (v, w) are projected onto the (y, z)-plane
for one period at the sequential cross-sections xn = nπ/5α, (n= −5, −4, . . . , 3, 4). In
the first half of the period, the counter-rotating inclined vortices are squeezed near
the centreline z = 0 to form a double vortex layer with velocity vectors following a
figure of eight (figure 13b). Then, the knot of the figure eight is loosened (figure 13c)
and the double vortex layer returns to the single layer again with the vortices standing
up straight (figure 13d). The vortices are inclined in the same direction as when the
sequence started, but the velocity vectors point in the opposite direction (figure 13f).
In the latter half of the period, the sequence is repeated with the velocity vectors
reversed (figures 13g–j ).

5. Concluding remarks
We have analysed the stability of plane Poiseuille flow subject to the streamwise

system rotation. It is found that when rotation is added, the instability due to
two-dimensional perturbations is delayed. A further increase of rotation leads to
three-dimensional instability whose critical Reynolds number is far less than the
critical Reynolds number for non-rotating Poiseuille flow. We have also analysed the
nonlinear aspect of the bifurcating three-dimensional secondary flow. The secondary
flow exhibits a spiral vortex structure propagating in the streamwise direction with a
spanwise antisymmetric mean flow.

Investigation of the stability of the secondary flow is underway and detailed results
will be reported separately in the near future. A preliminary analysis indicates that
the secondary state can be stable for Reynolds numbers slightly above the critical
value.
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Figure 13. The total velocity field of the secondary flow u = UB + Ǔ i + V̌ j + ǔ on the
(y, z)-plane with α = 0.35, β = 2.36, R = 70, Ω = 140 at xn = nπ/5α. (a) n= −5, (b) −4, . . . ,

(i) 3, (j ) 4. Arrows indicate (V̌ + v̌, w̌). Darker area indicates stronger streamwise velocity

UB + Ǔ + ǔ.

Appendix. Nonlinear terms δ((ǔ · ∇)ǔ) and ε((ǔ · ∇)ǔ)

The nonlinear terms δ((ǔ · ∇)ǔ) and ε((ǔ · ∇)ǔ), which appear in (2.19) and (2.20),
respectively, are expressed explicitly. The differential operators with a prime operate
on φ or ψ with a prime on the same line. Similarly, the differential operators without
a prime operate on φ or ψ without a prime on the line.

δ(ǔ · ∇ǔ)) = ((∂x∂́x + ∂y∂́y)(2(∂x∂́x + ∂y∂́y) + 
́2) − 
2
́2

)
φzφ́zz

+ ((∂x + ∂́x)
2 + (∂y + ∂́y)

2)
2((∂x∂́x + ∂y∂́y) − 
́2)φφ́z

− 
2((∂x∂́x + ∂y∂́y) + 
́2

)
φφ́zzz

+ (∂x∂́y − ∂y∂́x)(2(∂x∂́x + ∂y∂́y) + 
2)φzzψ́

+ 2(∂x∂́y − ∂y∂́x)(∂x∂́x + ∂y∂́y)φzψ́z

+ ((∂x + ∂́x)
2 + (∂y + ∂́y)

2)
2(∂x∂́y − ∂y∂́x)φψ́

− 
2(∂x∂́y − ∂y∂́x)φψ́zz

− 2(∂x∂́y − ∂y∂́x)
2ψψ́z (A 1)
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ε(ǔ · ∇ǔ)) = −
2

(
∂x∂́y − ∂y∂́x)φφ́zz

− 
́2

(
∂x(∂x + ∂́x) + ∂y(∂y + ∂́y)

)
φzψ́

+ 
2(∂́x(∂x + ∂́x) + ∂́y(∂y + ∂́y))φψ́z

− 
2

(
∂x∂́y − ∂y∂́x

)
ψψ́. (A 2)
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